Stand-alone PV System for EE 452 Lab

Elika Korhonen, Josh Pachl, Noah Chartouni, Steve Ukpan, and Travis Merrifield |

Project Statement

- Develop and expand the current EE-452 solar generation system to be more user friendly and educational for future students.

Why is this important?

- Renewable energy is an up and coming field that Power Engineers at Iowa State University need exposed too.

Our Solution

- This Semester

- Develop Working Simulink Model
- Bridge Motors and Solar Power via model trains

- <u>Next Semester</u>

- Create a new workstation for solar equipment
- Continue the lab manuals created by previous teams

Standards

- Workstation must be clean, safe and simple
- Lab exercises should have real world connections and be engaging
- IEEE standards should be followed in regard to sizing, installation and maintenance of lead acid batteries

The System

Understanding a Solar Cell

- Silicon p-n type junction
- Electrons jump to the holes in p-type(depletion zone)
- Electric field is formed from depletion zone
- Sunlight ejects electrons crossing depletion zone Creates electricity

G.Bhucaneswari, R. Annamalai, "Development of a Solar Cell Model In Matlab For PV Based Generation System"

Solar Panel

- Combination of solar cell in series or parallel (higher current/energy)
- Amplify & direct output current from the cells
- Output Power depends on Irradiance and Temperature
- Quiet, Low maintenance , Eco-Friendly

Solar Panel

- Profile curves are governed by equation:

 $|I_{tot} = I_{|} - I_{0}(e^{qV/kT} - 1)$

- Greatest efficiency is achieved when the current and voltage are balanced
- Relationship between I and V

What is MPPT

- Balance of parameters for maximum solar panel performance
- Four methods:
 - Perturb & Observe
 - Incremental Conductance
 - Current Sweep
 - Constant Voltage
- Responds with varying conditions
- P&O is the simplest to understand

Use of DC-DC Converter Cont.

- Buck/Boost converter
- Stabilize varying current received from solar panels
- Uses impedance matching to achieve max power

Impedance matching

From Kwasinski, University of Texas

Simulation Circuit

Simulation Comparison and Calculation

1	A	В	С	D	E	F	G	Н	1
1	Parame	eters							
2	Load	50	ohms						
3	Inductor	6*10^-6	Henry's						
4	Capacitor	324*10^-6	Farads						
5	Frequency	16000	Hz						
6	Irradiance	600	W/m^2						
7	Temperature	25	С						
8	Duration of Simulation	0.7	S						
9	A REAL PROPERTY OF A REAL PROPERTY OF								
10	2								
11				Measurements					
12	Duty Cycle	V (Volts)	I (Amps)	Measured V/I(Ohms)	Calculated (Ohms)	%error	V*I		
13	0.5	20.9	1.7	12.29411765	12.5	1.6%	35.53	Watts	
14	0.55	20.71	2.082	9.947166186	10.125	1.8%	43.11822	Watts	
15	0.6	20.3	2.597	7.81671159	8	2.3%	52.7191	Watts	
16	0.65	19.91	3.308	6.018742443	6.125	1.7%	65.86228	Watts	
17	0.7	18.84	4.254	4.42877292	4.5	1.6%	80.14536	Watts	
18	0.75	14.98	4.849	3.089296762	3.125	1.1%	72.63802	Watts	
19	0.8	9.79	4.917	1.991051454	2	0.4%	48.13743	Watts	
20	0.85	5.62	4.966	1.13169553	1.125	0.6%	27.90892	Watts	
21	0.9	2.55	5.001	0.50989802	0.5	2.0%	12.75255	Watts	
22	0.95	0.667	5.023	0.13278917	0.125	6.2%	3.350341	Watts	
23	1	0.005031	5.031	0.001	0	N/A	0.025310961	Watts	
24					Req = (1-D)^2*Rload				
25									
26	Max Powe	er Point							
27		3.8766234	Ohms						
28		82.42	Watts						
29	Calculated Duty Cycle	0.7215535							
30	Measurments								
31	Volts	17.75							
32	Amps	4.647							
33	V/I	3.8196686	Ohms						
34	Power	82.48425	Watts						
35									

Battery

- Allows continuous operation
- Sized by amount of Ah required by the system
- Depth of Discharge determines charging cycle
- Charge-Discharge affects lifespan (efficiency less than 80%)

Florida Solar Energy Center/University of Central Florida

Charge Controller

- Elongates lifespan of the battery
- Series or shunt controller
- Regulates amount of current flowing in/out of battery
- Controls source seen by load

Florida Solar Energy Center/University of Central Florida

Need For Simulink Model

- Provides an in depth understanding of the equipment we will be working with
- Each part of the system can be built and simulated using Simulink
- This can be used by students in lab, as well as by us to, help us understand different applications

Simulink Model

Model Data

100 ohm load, 60hz

Current Workstation

- Messy and unorganized
- Safety hazards
- Create a slimmer smarter package.
 - New Ammeters, voltmeters and wiring setup.

Project Goals Next Semester

- Improve current workstation layout
- Build upon previous groups lab manuals / generate new
- Create a new lab with model trains

Solar Train

- Students will learn and see the effects of MPPT
- DC motors propel the train around the track
- Main topic in EE452
- Find max power on Torque Rotational Speed plot
- Calculate battery capacity needed to power trains at night
- Examine different charge controllers to understand how the system receives power in day/night

Courtesy of Simulink PV Mode

Summary

- Discussed our project statement and standards
- Went over how our system works and showed our current model
- Showed results pertaining to our models
- Discussed next semester's goals and objectives

Questions?

References

- Anca D. Hensen, Poul Sorensen, Lars H. Hansen, Henrik Binner, "Models for a Stand-Alone PV System", Riso National laboratory, Roskilde, pp. 1-78, 2000.
- G.Bhucaneswari, R. Annamalai, "Development of a Solar Cell Model In Matlab For PV Based Generation System", India Conference (INDICON), 2011 Annual IEEE, pp. 1-5, 2011.
- "IEEE." IEEE The world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. N.p., n.d. Web. 23 Feb. 2017.
- Mishra, Bibek, and Bibhu Prasanna Kar. "Matlab Based Modeling of Photovoltaic Array Characteristic." Thesis. National Institute of Technology, Rourkela, 2012.
- O.E.M Youssef, N.M.B Abdel-Rahim, A. Shaltout, "Performance of Stand-alone Hybrid Wind-Photovoltaic System with Battery Storage", 14th international Middle East Power Systems Conference (MEPCON'10), Cairo University, pp 1-7, 2010.
- Ting-Chung Yu, Yu-Cheng Lin, "A Study on Maximum Power Point Tracking Algorithms for Photovoltaic Systems", Lunghwa University of Science and Technology, pp. 1-10, 2010.
- Tyson DenHerder, "Design and Simulation of Photovoltaic Super System Using Simulink" California Polytechnic State University, San Luis Obipo, 2006.

Boost Converter Circuit

MPPT Code & Charge Controller Code (Extra)

3 -	persistent Vold Pold Dold;
4	
5 -	<pre>dataType = 'double';</pre>
6	
7 -	if isempty(Vold)
8 -	Vold=0;
9 -	Pold=0;
10 -	Dold=Dinit;
11	end
12	%if the series switch is open, the duty cycle should stay were it is
13 -	if Series_Switch == 0
14 -	D = Dold;
15 -	return
16	end
17	
18 -	P= V*I;
19 -	dV= V - Vold;
20 -	dP= P - Pold;
21	
22 -	if dP ~= 0
23 -	if dP < 0
24 -	if $dV < 0$
25 -	D = Dold - deltaD;
26	else
27 -	D = Dold + deltaD;
28	end
29	else
30 -	if $dV < 0$
31 -	D = Dold + deltaD;
32	else
33 -	D = Dold - deltaD;
34	end
35	end
36	else D=Dold;
37	end
38	
39 -	11 D >= Dmax D<= Dmin
40 -	n=nord;
41	ena
42	Del d-D.
43 -	Dold-D;
44 -	
*0 -	FUIL-F,

1	5	<pre>[] function [Series, load] = Charge Controller(SOC, I , V</pre>
2		
3	-	persistent flag
4		
5	_	if isempty(flag)
6	-	flag = 0;
7		end
8	-	Series = 1;
9	-	load = 1;
0		%Not fully charged, keep charging
.1	-	if SOC < 100 && flag == 0
.2	-	Series = 1;
.3	-	<pre>flag = 0;</pre>
.4		%Reached full charge, stop charging
5	-	elseif SOC >= 100
6	-	Series = 0;
.7	-	flag = 1;
8	-	load = 1;
9		<pre>%voltage still okay, keep discharging</pre>
0	-	elseif 100 < SOC > 99.8 && flag == 1
1	-	Series = 0;
2	-	load = 1;
3		%Voltage is low enough to charge again
4	-	elseif SOC < 99.8 && flag == 1
5	-	Series = 0;
6	-	load = 1;
7	-	<pre>flag = 0;</pre>
8		<pre>%Voltage is to low, disconnent load and charge</pre>
9	-	elseif SOC <=60
0	-	load = 0;
1	-	Series = 1;
2	-	flag = 2;
3		&Voltage needs to build up before discharging again
4	-	elseif (80 < SOC < 60) && Flag == 2
15	-	load = 0;
6	-	Series = 1;
7		%We have charged enough, start discharging
8	-	elseif SOC > 80 && flag == 2
9	-	load = 1;
0	-	Series = 1;
1	-	flag = 0;
2		- end

Model Data

30 ohm AC load